\(\int \frac {\sqrt {\tan (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [192]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 196 \[ \int \frac {\sqrt {\tan (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac {(i A-B) \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {(3 i A+7 B) \sqrt {\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}-\frac {(3 i A-13 B) \sqrt {\tan (c+d x)}}{60 a^2 d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

(-1/8-1/8*I)*(A-I*B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/a^(5/2)/d-1/60*(3*I*A-13
*B)*tan(d*x+c)^(1/2)/a^2/d/(a+I*a*tan(d*x+c))^(1/2)+1/5*(I*A-B)*tan(d*x+c)^(1/2)/d/(a+I*a*tan(d*x+c))^(5/2)+1/
30*(3*I*A+7*B)*tan(d*x+c)^(1/2)/a/d/(a+I*a*tan(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {3676, 3677, 12, 3625, 211} \[ \int \frac {\sqrt {\tan (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}-\frac {(-13 B+3 i A) \sqrt {\tan (c+d x)}}{60 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {(7 B+3 i A) \sqrt {\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}+\frac {(-B+i A) \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}} \]

[In]

Int[(Sqrt[Tan[c + d*x]]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((-1/8 - I/8)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(5/2)*d)
+ ((I*A - B)*Sqrt[Tan[c + d*x]])/(5*d*(a + I*a*Tan[c + d*x])^(5/2)) + (((3*I)*A + 7*B)*Sqrt[Tan[c + d*x]])/(30
*a*d*(a + I*a*Tan[c + d*x])^(3/2)) - (((3*I)*A - 13*B)*Sqrt[Tan[c + d*x]])/(60*a^2*d*Sqrt[a + I*a*Tan[c + d*x]
])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3676

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b - a*B))*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(2*a*f
*m)), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d
*n) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rule 3677

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*
f*m*(b*c - a*d))), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rubi steps \begin{align*} \text {integral}& = \frac {(i A-B) \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {\int \frac {\frac {1}{2} a (i A-B)-a (2 A-3 i B) \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx}{5 a^2} \\ & = \frac {(i A-B) \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {(3 i A+7 B) \sqrt {\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}-\frac {\int \frac {\frac {1}{4} a^2 (9 i A+B)-\frac {1}{2} a^2 (3 A-7 i B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx}{15 a^4} \\ & = \frac {(i A-B) \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {(3 i A+7 B) \sqrt {\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}-\frac {(3 i A-13 B) \sqrt {\tan (c+d x)}}{60 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {\int \frac {15 a^3 (i A+B) \sqrt {a+i a \tan (c+d x)}}{8 \sqrt {\tan (c+d x)}} \, dx}{15 a^6} \\ & = \frac {(i A-B) \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {(3 i A+7 B) \sqrt {\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}-\frac {(3 i A-13 B) \sqrt {\tan (c+d x)}}{60 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {(i A+B) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{8 a^3} \\ & = \frac {(i A-B) \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {(3 i A+7 B) \sqrt {\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}-\frac {(3 i A-13 B) \sqrt {\tan (c+d x)}}{60 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {(A-i B) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 a d} \\ & = -\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac {(i A-B) \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {(3 i A+7 B) \sqrt {\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}-\frac {(3 i A-13 B) \sqrt {\tan (c+d x)}}{60 a^2 d \sqrt {a+i a \tan (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.00 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.13 \[ \int \frac {\sqrt {\tan (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\sec ^2(c+d x) \sqrt {\tan (c+d x)} \left (-2 i (9 A-i B+2 (3 A-7 i B) \cos (2 (c+d x))+20 B \sin (2 (c+d x))) \sqrt {i a \tan (c+d x)}+15 \sqrt {2} (i A+B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) (\cos (2 (c+d x))+i \sin (2 (c+d x))) \sqrt {a+i a \tan (c+d x)}\right )}{120 a^2 d \sqrt {i a \tan (c+d x)} (-i+\tan (c+d x))^2 \sqrt {a+i a \tan (c+d x)}} \]

[In]

Integrate[(Sqrt[Tan[c + d*x]]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(Sec[c + d*x]^2*Sqrt[Tan[c + d*x]]*((-2*I)*(9*A - I*B + 2*(3*A - (7*I)*B)*Cos[2*(c + d*x)] + 20*B*Sin[2*(c + d
*x)])*Sqrt[I*a*Tan[c + d*x]] + 15*Sqrt[2]*(I*A + B)*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[
c + d*x]]]*(Cos[2*(c + d*x)] + I*Sin[2*(c + d*x)])*Sqrt[a + I*a*Tan[c + d*x]]))/(120*a^2*d*Sqrt[I*a*Tan[c + d*
x]]*(-I + Tan[c + d*x])^2*Sqrt[a + I*a*Tan[c + d*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1085 vs. \(2 (158 ) = 316\).

Time = 0.14 (sec) , antiderivative size = 1086, normalized size of antiderivative = 5.54

method result size
derivativedivides \(\text {Expression too large to display}\) \(1086\)
default \(\text {Expression too large to display}\) \(1086\)
parts \(\text {Expression too large to display}\) \(1143\)

[In]

int(tan(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/240/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)/a^3*(-60*I*A*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x
+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)-12*A*(-I*a)^(1/2)*(a*tan(d*x+c)*(
1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^3-90*I*B*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^
(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^2-15*A*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)
*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^4-212*B*(-I*a)^(1/2)*(a*tan(d*x+c)*(
1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^2+220*I*B*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+15*I
*B*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I)
)*a*tan(d*x+c)^4+60*B*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x
+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3+15*I*B*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^
(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+60*I*A*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d
*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3+90*A*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*ta
n(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^2+12*I*A*(-I*a)^(1/2)*(a*tan
(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^2+60*I*A*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-60*B*2^
(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*t
an(d*x+c)-52*I*B*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^3-15*A*ln((2*2^(1/2)*(-I*a)^(1/
2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*2^(1/2)*a-60*A*(-I*a)^(1/2)*(a*ta
n(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+60*B*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2))/(a*tan(d*
x+c)*(1+I*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^4/(-I*a)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 461 vs. \(2 (146) = 292\).

Time = 0.29 (sec) , antiderivative size = 461, normalized size of antiderivative = 2.35 \[ \int \frac {\sqrt {\tan (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {{\left (15 \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (\frac {2 \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{5} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \sqrt {2} {\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{4 i \, A + 4 \, B}\right ) - 15 \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-\frac {2 \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{5} d^{2}}} e^{\left (i \, d x + i \, c\right )} - \sqrt {2} {\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{4 i \, A + 4 \, B}\right ) - \sqrt {2} {\left ({\left (3 i \, A + 17 \, B\right )} e^{\left (6 i \, d x + 6 i \, c\right )} - 6 \, {\left (-2 i \, A - 3 \, B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, {\left (-6 i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + 3 i \, A - 3 \, B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{120 \, a^{3} d} \]

[In]

integrate(tan(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/120*(15*sqrt(1/2)*a^3*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log((2*sqrt(1/2)*a^3*d*
sqrt((I*A^2 + 2*A*B - I*B^2)/(a^5*d^2))*e^(I*d*x + I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sq
rt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))/(4*I*A + 4*B)) -
 15*sqrt(1/2)*a^3*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(-(2*sqrt(1/2)*a^3*d*sqrt((
I*A^2 + 2*A*B - I*B^2)/(a^5*d^2))*e^(I*d*x + I*c) - sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(
e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))/(4*I*A + 4*B)) - sqrt(
2)*((3*I*A + 17*B)*e^(6*I*d*x + 6*I*c) - 6*(-2*I*A - 3*B)*e^(4*I*d*x + 4*I*c) - 2*(-6*I*A + B)*e^(2*I*d*x + 2*
I*c) + 3*I*A - 3*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) +
 1)))*e^(-5*I*d*x - 5*I*c)/(a^3*d)

Sympy [F]

\[ \int \frac {\sqrt {\tan (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {\tan {\left (c + d x \right )}}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(tan(d*x+c)**(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Integral((A + B*tan(c + d*x))*sqrt(tan(c + d*x))/(I*a*(tan(c + d*x) - I))**(5/2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {\tan (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(tan(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {\tan (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(tan(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Non regular value [0] was discarded and replaced randomly by 0=[-27]Warning, replacing -27 by 20, a substit
ution varia

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\tan (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \]

[In]

int((tan(c + d*x)^(1/2)*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int((tan(c + d*x)^(1/2)*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(5/2), x)